Black Hole Astrophysics
Chapters 7.5

All figures extracted from online sources of from the textbook.



Recap - the Schwarzschild metric

“Sch” means that this metric is describing a Schwarzschild Black Hole.
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The Schwarzschild radius r; = ZSZM

“SH” means that we are in the Schwarzschild-Hilbert
coordinate system.



Recap - coordinate systems used

1. The moving body frame (MOV)

3. Schwarzschild-Hilbert frame (SH)




What is a Kerr Black Hole?

Solution to the Einstein Equations for
Rotating, Uncharged, axially-symmetric black hole in empty spacetime.

Brief Introduction:

Like other stars, black holes can rotate. The
difference here, is that black hole rotational
speeds can be near the speed of light,
causing still more changes in the metric
and in the way matter moves near a black
hole. Space itself around a black hole can
rotate, and it is this rotation of space that,
k very possibly, is the ultimate cause for
some of the powerful jets of matter that we
see being ejected from quasars and other
black hole systems.
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The Kerr Metric

“KER” means that this metric is
describing a Kerr Black Hole.

p? p?
“BL” means that we are in the p’
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Boyer-Lindquist coordinate system \9BL Jqg = A :
(generalization of Schwarzschild- ) g ; 0 p 2 0

i : wX“sin“f )
Hilbert coordinate). \ i 0 0 s sinZg /

GM

The Gravitational radius r; = o

Because the metric is sort of complicated, so the 3 functions are defined for clarity.



The Kerr Metric
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i — GMJZ/C is the dimensionless angular momentum parameter (—1 < j < 1) that measures

how much angular momentum J the BH has relative to its maximum value.
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The Horizon and Ergosphere
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The Horizon and Ergosphere

grr = 0 when 4 - 0 givesry = (1 SRR | )r which is, in fact, the horizon.

Zrir = 0 givesrg = (1 +4/1 —jzcoszﬁ)rg

It

So, what happens within r; but outside ry?

From the metric,
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Both g and g, are positive! How will particles behave in this region?

Since particles follow timelike geodesics, ds? < 0, this means that we must have the It
term to be positive. This forces d¢ to be non-zero!

i.e. In this region, called the “Ergosphere”, everything must rotate in the same direction
(how to prove?) as the black hole!




Coordinate systems for Kerr BH

1. The moving body frame (MOV) 3. Boyer-Lindquist frame (BL)




The moving body frame (MOV)

Similar to the Schwarzschild BH
case, we can choose to move
with the object of interest. Since
spacetime is locally flat, we
have a Minkowski metric in this
case
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and by definition the 4-velocity
(Umowv)® = (¢,0,0,0)




Fixed local Lorentz frame (FIX)

Again, we consider some locally flat part of
the Kerr spacetime to sit on and watch things
fly past. Therefore the metric is still the
Minkowski one
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but now the 4-velocity of objects become
Y€
Y’
(Upx)® = Yo

However, the Kerr spacetime itself is rotating, therefore being fixed in such a
frame means that you are actually rotating with the black hole at rate w.

Therefore this observer has no angular momentum with respect to the BH.



Boyer-Lindquist frame (BL)

This is a global coordinate, just like
the SH frame used for
Schwarzschild BH.

For this coordinate, the metric is

the one we presented earlier
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Observer at Infinity /Synchronous frame (OIS)

- This system rotates with the space around the black
1 | PR hole, is local to each radius r, and has a diagonal metric;
but that metric is not an orthonormal Lorentz/
Minkowskian system . It relates to the BL coordinates
simply by dp’ = dp — wdt
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Back to the Boyer-Lindquist frame

4. Observer at Infinity/ Synchronous frame (OIS) 3. Boyer-Lindquist frame (BL)

The OIS is not a good system in which to work. It is not global, so derivatives are valid only

locally. And the ergosphere is hidden in this frame because w is gone from gIéFSR. So we

quickly leave the OIS system and transform the vectors and 1-forms back to the Kerr system
to find

YZ/pVA
YV VA4 /p > :
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Remember that (Vf, Vg, chb) are all evaluated in the FIX frame.



Conserved Quantities

As we have introduced last week, since the metric is independent
of t and ¢, Energy and angular momentum are conserved.

The Angular momentum:
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Comparing with the Schwarzschild case, it’s easy to see that is the cylindrical

radius as we mentioned before.



Conserved Quantities

Energy: _ T
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Is the new term in Kerr metric due to rotation of space.

IfV® > 0 the particle is rotating in the same direction as the BH, and we see that it adds
to the energy at infinity.

If Va’ < 0 the particle rotates in the opposite direction as the BH, now, it subtracts from
the energy at infinity!

However, as long as EX®™ > 0 the particle will always add mass to the BH.



Negative energy

For a Kerr BH, there are two terms as p\A _ ¥sin0

Kerr _ - 2
we have discussed, therefore it is now E™T = —p, = ym,c b5 + ym0V¢

possible to have negative energy!
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We find that to achieve this, the condition is

Energy is now negative and this particle will actually decrease the BH mass as it falls
in! This also means that in the process, it releases part of the BH mass as energy to
the outside world!

However, we find that since Ve < c always, the only place where this condition can
hold is within the ergosphere.

This process of extracting rotational mass-
energy from the BH is called the Penrose
Process.



Reducible and irreducible mass

7.5.1.2 Reducible and Irreducible Mass

If rotational energy were to be extracted from a spinning black hole, it not only
would spin down, it also would lose the gravitational mass of that lost spin energy.
When this process 1s complete, and the hole is left in a non-spinning state, the mass

remaining is its “irreducible” mass'

My = M [(1 + M) /2} 2 (7.50)

which is proportional to the square root of the horizon area 4w (rf; + j°r7). The
total available rotational energy that can be extracted, therefore, is M.oqc?, where
Myeqa = M — M, 1s the amount of “reducible” mass in the spinning hole. Note that
M eq 18 not the same as the mass that can be formed from the (angular) momentum
of the spinning black hole: Mp = Jc¢/(2 GM;,). The latter adds in quadrature with
M;, to give M* = M% + M2, similar to equation (6.64).

r?



Free fall

~ 2sin®
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The free fall case is easy to compute, since it will have
V¢ = 0 always.

This is in fact very interesting because V¢ is relative to
the rotating space around the Kerr BH! So, the falling
body actually picks up angular velocity that is exactly
that of the rotating space!

5 WP, vie v®is the velocity measured by
u?®
pd = L I pE an observer using the BL frame
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Free fall

Now, let’s discuss the detailed velocity as a function of r as the particle falls from infinity.

By setting the energy at infinity to the rest mass-energy as we did last week,
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Schwarzschild case:
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For the Kerr case, even a simple free-fall becomes very interesting, it depends on not
only the spin but also the angle of entry 6.

Let’s plot some of these on the next page and see what happens.



Free fall

Mathematica file



Orbits in the equatorial plane

Following a similar procedure as the Schwarzschild case, but much more complicated
(I don’t know exactly how complicated it is because I didn’t do it...), we get

Schwarzschild case:
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< Keplerian rotation in the rotating space of the BH.
+ [£  + is prograde (in the global coordinate)
" —isretrograde (in the global coordinate)

—j 9 Comes from the outward contrifugal effect due to rotation of space.

iz ¢
2jry Because we measure VOF]O’BL

i rv/A so the velocity of the metric must be subtracted off.

in the rotating frame,




A note on prograde and retrograde

B Ll
J = GM2/c
how much angular momentum J the BH has relative to its maximum value.

is the dimensionless angular momentum parameter (—1 < j < 1) that measures

Keplerian rotation in the rotating space of the BH.
+ [£  + is prograde (in the global coordinate)
T —isretrograde (in the global coordinate)

® We have a few important notes on the j parameter. First, there is little consistency in the literature
and books for what to call the dimensionless angular momentum. Some define an a = J/(Mec),
which has units of length, and then a dimensionless a* = a/r,4. Others drop the asterisk on the
latter parameter and use a for the dimensionless quantity, thereby conflicting with others in the
literature. Here we use j throughout the book (and in papers we publish) as the dimensionless
expression of .J, just as m is for M, r is for M, etc. Second, most authors take the range of j to be
0 < j < 1 and then treat orbits of individual particles as being prograde or retrograde. However,
in this book we find it both mathematically, and astrophysically, useful to envision the black hole
as being at the center of a stationary (e.g., Boyer—Lindquist) coordinate system in which many
other objects (stars, gas, efc.) are moving. In that case the black hole can be rotating in a prograde
(0 <35 <1)orretrograde (—1 < 5 < 0) fashion in that system, and orbits still can be prograde
or retrograde also within that system. Therefore, here we allow j to have the full range from —1 to
+1. This also still handles all four combinations of (7 < 0, 7 > 0) and (£2,,1, < 0, 2.1, > 0).



The photon orbit

2 2 a8
Using VO(’;b,BL = c as last week,  TphBL = 27y (1 + cos <§ cos_1(+])>>

> Orbiting counter to BH spin. <

Prograde orbit in
j=-1 BH is further
from the BH (4 7 )
because it is going
against the BH.

Schwarzschild case

\ —— retrograde
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Retrograde orbit in j=-1 BH gets close
to the BH (1 1, ) because it is also going

in the same direction as the BH.

05 1.0

Retrograde orbit in
j=1 BH is further
from the BH (4 7 )
because it is going
against the BH.

Prograde orbit in j=1 BH gets close
to the BH (1 r; ) because it is going

in the same direction as the BH.

L Orbiting in same direction as BH spin. P



The ISCO

Following similar but more complicated derivation as last week (again, I was lazy),
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Prograde orbitin j=1
BH gets close to the
BH (11, ) because it is
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Prograde orbits

Important Radii in Rotating Black Hole Structure
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Horizon Penetrating Coordinates
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As can be seen from the BL coordinates, &3 T2 At L 2

the singularity in g, comes with4 — 0. p?

To avoid this, we can again find a horizon  (g5t%),, = . FEEZ! ¢

penetrating coordinate similar to what we g a 0 p? : 0
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This is achieved by redefining bothtand ¢  dt = dt’ — S dr d¢ =dd’' - o dr
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The coordinate change compresses time near the BH.
Then the new metric reads
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